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May 12, 2014
PARS

(joint work with Dana Williams)



Introduction Semigroup actions Higher rank graphs Amenability

Introduction

A few years ago, I was recruited by an Australian team to help
them to show that the C*-algebras of their topological higher rank
graph C*-algebras were nuclear.
It is well known that for a locally compact groupoid G with Haar
system,

G amenable ⇒ C ∗(G ) nuclear

Therefore, the proof can be decomposed into two steps.
a) write the C*-algebra as a groupoid C*-algebra C ∗(G );
b) show that the groupoid G is amenable.
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Deaconu-Renault groupoids

It is known that graph C*-algebras can be described as C*-algebras
of groupoids of the following form:

Let X be a topological space and T a local homeomorphism from
an open subset dom(T ) of X onto an open subset ran(T ) of X .
Then

G (X ,N,T ) = {(x ,m − n, y) : m, n ∈ N,Tmx = T ny}

has a natural étale groupoid structure.

This groupoid is often called a Deaconu-Renault groupoid but a
better name is semigroup semi-direct product. A suggestive
notation is

G (X ,N,T ) = X oT N

.
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The canonical cocycle

An essential feature of the semi-direct product is its canonical
cocycle

c : G (X ,N,T )→ Z

given by c(x ,m − n, y) = m − n.
Therefore, G (X ,N,T ) can be viewed as an extension of the
groupoid c−1(0) by the range of c .

One expects that the amenability of c−1(0) and the amenability of
Z imply the amenability of G (X ,N,T ). A precise statement will
be given later.
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semigroup action by partial local homeomorphisms

Definition

A right action of a semigroup P on a topological space X is a map

(x , n) ∈ X ∗ P 7→ xn ∈ X

where X ∗ P is an open subset of X × P, such that

1 for all x ∈ X , (x , e) ∈ X ∗ P and xe = x ;

2 if (x ,m) ∈ X ∗ P, then (xm, n) ∈ X ∗ P iff (x ,mn) ∈ X ∗ P; if
this holds, we have (xm)n = x(mn);

3 for all n ∈ P, the map defined by Tnx = xn is a local
homeomorphism with domain
U(n) = {x ∈ X : (x , n) ∈ X ∗ P} and range
V (n) = {xn : (x , n) ∈ X ∗ P}.
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caveat

• One does not assume that P acts by homeomorphisms. The
maps Tn : U(n)→ V (n) are local homeomorphisms. One-sided
subshifts of finite type or z 7→ z2 on the circle are such maps.

• One does not assume that the maps Tn are defined everywhere
nor that they are surjective. Thus, we have a partial action of the
semigroup P on X . We shall see that higher rank graphs lead to
such semigroup actions. Another example was given by I. Putnam
long time ago: start with a self-homeomorphism T of X and
consider its restriction T|U where U is an open subset of X .
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directed actions

Definition

Let us say that a semigroup action (X ,P,T ) is directed if for all
pairs (m, n) ∈ P × P such that U(m) ∩ U(n) in non-empty, there
exists r = ma = nb such that U(r) ⊃ U(m) ∩ U(n).

Note that if T is everywhere defined, our condition says that P is
directed with respect to the (left invariant) order relation m ≤ m′

iff there exists a ∈ P such that m′ = ma. We shall only consider
sub-semigroups P ⊂ Q of a group Q. Then, the condition can be
expressed as P−1P ⊂ PP−1. This condition is realized if
PP−1 = Q. A semigroup which satisfies this condition is called a
right reversible Ore semigroup.
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well-directed actions

Definition

Let us say that a semigroup action (X ,P,T ) is well-directed if it is
directed: for all pairs (m, n) ∈ P × P such that U(m) ∩ U(n) in
non-empty, there exists r = ma = nb such that
U(r) ⊃ U(m) ∩ U(n) and if moreover m, n ≤ N, where N ∈ P, one
can find r ≤ N.
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semi-direct product

The following semi-direct groupoid appears in [Exel-R, Semigroups
of local homeomorphisms and interaction groups, 2007] in the case
when for all n, U(n) = V (n) = X .

Proposition

Let (X ,P,T ) be a directed semigroup action. Assume that P is a
subsemi-group of a group Q. Then

G (X ,P,T ) = {(x ,mn−1, y) ∈ X × Q × X : xm = yn}

is a subgroupoid of X × Q × X which carries an étale groupoid
topology and a continuous cocycle c : G (X ,P,T )→ Q given by

c(x ,mn−1, y) = mn−1.
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topological higher rank graphs

Definition

A topological higher-rank graph graded by a semigroup P, or
P-graph for short, is a topological small category Λ endowed with
a map, called the degree map, d : Λ→ P which satisfies the
following properties

1 for all m ∈ P, Λm = d−1(m) is open;

2 for all (µ, ν) ∈ Λ(2), d(µν) = d(µ)d(ν) and for all v ∈ Λ(0),
d(v) = e;

3 it has the unique factorization property: for all m, n ∈ P, the
composition map Λm ∗ Λn → Λmn is a homeomorphism.

We define on Λ the order µ ≤ µ′ iff there exists ν ∈ Λ such that
µ′ = µν.
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from SGA to THRG

Let T : X ∗ P → X be a semigroup action as above. Then
Λ = X ∗ P has a natural structure of topological higher rank
graph. It is given by Λ(0) = X , the range and source maps
r , s : Λ→ X are respectively r(x , n) = x and s(x , n) = xn. The
composition of arrows is the usual concatenation of paths:

(x ,m)(xm, n) = (x ,mn).

The degree map d : Λ→ P is simply d(x , n) = n.

We shall see conversely how, under suitable assumptions, one can
go from THRG to SGA.
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assumptions

We make the following assumptions about the semigroup P:

P is a subsemigroup of a group Q;

P ∩ P−1 = {e};
PP−1 = Q;

the segments [a, b] = aP ∩ bP−1 are finite;

P is quasi-lattice ordered: as soon as a, b ∈ P have a c.u.b.,
they have a least c.u.b. denoted a ∨ b.

and the following assumption about Λ:

Λ is compactly aligned, i.e. if A,B are compact subsets of Λ,
so is A ∨ B.
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associated semigroup action

Topological higher rank graphs provide semigroup actions.

Proposition

Let Λ be a P-graph satisfying above assumptions. Define

Λ ∗ P = {(λ,m) ∈ Λ× P : m ≤ d(λ)}

and T : Λ ∗ P → Λ by T (λ,m) = λm =: ν if d(λ) = mn and
λ = µν with d(µ) = m and d(ν) = n.

1 T is an action of P on Λ by partial local homeomorphisms.

2 The action is well-directed.
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order compactification

The action of P on Λ is not so interesting! it is proper, i.e. the
semi-direct product Λ o P is a proper groupoid. However the space
Λ admits a natural compactification, its order compactification Λ
which we are going to define and things become much more
interesting!

For λ ∈ Λ, we define

F (λ) = {µ ∈ Λ : µ ≤ λ}.

It is a closed subset of Λ. We define Λ as the closure of F (Λ) with
respect to Fell’s topology in the space of closed subsets of Λ.

The elements of Λ can be viewed, equivalently, as paths (finite or
infinite) or as hereditary and directed closed subsets of Λ.
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the completed semigroup action

Proposition

Let Λ be a P-graph satisfying above assumptions. Then,

1 the action of P on Λ extends to Λ;

2 this action is by partial local homeomorphisms and it is
well-directed;

3 the semi-direct groupoid Λ o P is étale, locally compact and
Hausdorff.

Remarks. 1) The higher rank C*-algebra is C ∗(Λ) = C ∗(Λ o P).
2) One also defines the boundary ∂Λ of Λ, the boundary action
and the associated groupoid ∂Λ o P.
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amenability of a semi-direct product

Let us return to our initial goal: the amenability of Λ o P and of
∂Λ o P. It results from:

Theorem (R-Williams 2013)

Let (X ,P,T ) be a well-directed semi-group action where X is a
locally compact Hausdorff space. Assume that P is a quasi-lattice
ordered subsemi-group of a countable amenable group Q. Then
the semi-direct product groupoid G (X ,P,T ) is topologically
amenable.

This is a corollary of the next theorem applied to the canonical
cocycle c : G (X ,P,T )→ Q. Since we assume that Q is
amenable, it suffices to check that c−1(e) is amenable. This is true
because it can be written as an increasing union of proper
equivalence relations

Rn = {(x , y) ∈ X × X : ∃m ≤ n : xm = ym}
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Our amenability result

Theorem (R-Williams 2013)

Let G be a locally compact groupoid with Haar system G, Q a
locally compact group and c : G → Q a continuous cocycle.
Assume that Q and c−1(e) are amenable and that there exists a
countable subset D ⊂ Q such that

∀x ∈ G (0), c(G x)D = Q,

then G is amenable.



Introduction Semigroup actions Higher rank graphs Amenability

Two previous results

Two particular cases were known:

Proposition (ADR 2000)

Let c : G → Q be a continuous cocycle. Assume that c is strongly
surjective, i.e. c(G x) = Q for all x ∈ G (0). Then, the amenability
of Q and of c−1(e) imply the amenability of G.

Proposition (Spielberg 2011)

Let c : G → Q continuous, where G is étale and Q is a countable
discrete abelian group. Then the amenability of c−1(0) implies the
amenability of G.
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sketch of the proof

1 Borel and amenability coincide;

2 amenability is invariant under equivalence;

3 the amenability of the skew-product G (c) implies the
amenability of G ;

4 the amenability of Q and of c−1(e) imply the amenability of
the reduction G (c)|Y of G (c) to the effective range of c :

Y = {(r(γ), c(γ)) : γ ∈ G} ⊂ G (0) × Q,

5 write G (0) × Q as a countable union of translates Yqi .
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